首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14883篇
  免费   3417篇
  国内免费   4161篇
测绘学   774篇
大气科学   1915篇
地球物理   3821篇
地质学   10762篇
海洋学   1111篇
天文学   602篇
综合类   1057篇
自然地理   2419篇
  2024年   25篇
  2023年   134篇
  2022年   214篇
  2021年   231篇
  2020年   246篇
  2019年   294篇
  2018年   261篇
  2017年   293篇
  2016年   331篇
  2015年   336篇
  2014年   503篇
  2013年   583篇
  2012年   644篇
  2011年   472篇
  2010年   503篇
  2009年   454篇
  2008年   613篇
  2007年   932篇
  2006年   1034篇
  2005年   1150篇
  2004年   1220篇
  2003年   949篇
  2002年   943篇
  2001年   911篇
  2000年   885篇
  1999年   1061篇
  1998年   1209篇
  1997年   816篇
  1996年   807篇
  1995年   737篇
  1994年   659篇
  1993年   772篇
  1992年   609篇
  1991年   504篇
  1990年   332篇
  1989年   202篇
  1988年   176篇
  1987年   92篇
  1986年   25篇
  1985年   45篇
  1984年   32篇
  1983年   46篇
  1982年   28篇
  1981年   19篇
  1980年   23篇
  1979年   16篇
  1978年   17篇
  1977年   11篇
  1976年   13篇
  1877年   7篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
991.
992.
Previous treatments of the relationship between the mass fraction of released magma volatiles and the eruption speeds of gas and pyroclasts in steady explosive eruptions have not taken detailed account of the dynamic effects associated with the finite size distribution of the pyroclasts. When this is done, it is found that previously published estimates of exsolved magma volatile contents obtained from the analysis of pyroclast size distributions in near-vent deposits overestimate the volatile content by approximately 20 per cent in the case of Plinian eruptions. The discrepancy is much worse for pyroclast size distributions skewed towards coarse clasts, as is common in basaltic lava fountains; in such cases pyroclast dispersal studies may overestimate the exsolved magma volatile content by at least 200 per cent. An analogous problem arises if released magma volatile amounts deduced from studies of fluid inclusions in pyroclasts are inserted into most current computer models of eruption dynamics, but the gas eruption speeds deduced have an even larger error, being underestimated by up to 300 per cent in the case of coarse-grained eruptions. The more sophisticated of the currently available numerical models of eruption dynamics can in principle avoid this problem, but practical implementation limitations have so far prevented such models being run with a sufficiently wide range of grain sizes for the importance of these effects to be fully appreciated.  相似文献   
993.
994.
The coupled plate interface of subduction zones—commonly called the seismogenic zone—has been recognized as the origin of fatal earthquakes. A subset of the after-shock series of the great Antofagasta thrust-type event (1995 July 30; M w = 8.0) has been used to study the extent of the seismogenic zone in northern Chile. To achieve reliable and precise hypocentre locations we applied the concept of the minimum 1-D model, which incorporates iterative simultaneous inversion of velocity and hypocentre parameters. The minimum 1-D model is complemented by station corrections which are influenced by near-surface velocity heterogeneity and by the individual station elevations. By relocating mine blasts, which were not included in the inversion, we obtain absolute location errors of 1  km in epicentre and 2  km in focal depth. A study of the resolution parameters ALE and DSPR documents the importance of offshore stations on location accuracy for offshore events. Based on precisely determined hypo-centres we calculate a depth of 46  km for the lower limit of the seismogenic zone, which is in good agreement with previous studies for this area. For the upper limit we found a depth of 20  km. Our results of an aseismic zone between the upper limit of the seismogenic zone and the surface correlates with a detachment zone proposed by other studies; the results are also in agreement with thermal studies for the Antofagasta forearc region.  相似文献   
995.
996.
An approach to expressing the magnetic properties of environmental materials in terms of the contributions of the magnetic susceptibilities of specific magnetic components is reported. The approach links the partial susceptibilities of discrete particles, domains or mineral fractions with the concentration-dependent parameters by means of multiple linear regression methods. The case study, using the Liverpool street dust data set, demonstrates that the technique is able to model the contributions of the main magnetic components satisfactorily. Several factors may have a significant impact on the regression results. These include the validity of the linear proportional relationships between partial susceptibilities and the relevant concentration-dependent parameters, the adequacy of the variable selection procedure and the regression model, and the suitability of certain magnetic parameters.  相似文献   
997.
A palaeomagnetic investigation has been carried out of rocks from the eastern part of the Voronezh Massif, which constitutes, together with the Ukrainian Shield, the Sarmatian segment in the southern part of the East European Craton. The samples were collected in a quarry close to the town of Pavlovsk (50.4°N, 40.1°E), where a syenitic-granitic body intrudes Archaean units. U–Pb (zircon) dating has yielded an age of 2080  Ma for the intrusion.
  Two characteristic magnetic components, A and B, were isolated by thermal and alternating-field demagnetization. Component A was obtained from granites and quartz syenites (11 samples) and has a mean direction of D = 229°, I = 28°, and a pole position at 12°N, 172°E. This pole is close to a contemporary mean pole (9°N, 187°E) for the Ukrainian Shield, which implies that the Voronezh Massif and the Shield constituted a single entity at 2.06  Ga. These poles differ from contemporaneous poles of the Fennoscandian Shield, indicating that the relative positions of the two shields were different from their present configuration about 2100  Myr ago.
  A component B, isolated only in quartz monzonites (five samples), has a mean direction D = 144°, I = 49°, and a pole position at 4°N, 251°E, which is close to late Sveconorwegian (approximately 900  Ma) poles for Baltica. This suggests that the East European Craton was consolidated some time between 2080 and 900  Ma. Comparison with other palaeomagnetic data permit us to narrow this time span to 1770–1340  Ma.  相似文献   
998.
A palaeomagnetic study comprising the directional results from 289 individual lava flows, sampled along eight sections in the Palaeocene basalts of West Greenland, is reported. The eight individual sections are correlated using lithostratigraphical marker horizons to form a single composite profile. Generally, the lithological correlation is in good agreement with the record of geomagnetic secular variation.
  The total composite palaeomagnetic profile represents a stratigraphic thickness of 1.6  km through the Vaigat Formation, which is the lowermost of the two volcanic formations formed during the main stage of plateau volcanism. Only two polarity zones are found in the composite profile, suggesting a very short duration for the West Greenland main plateau-building volcanism. 40Ar/39Ar dates support a high extrusion rate and also indicate that the lower normal polarity zone is Chron C27n and that the upper reverse polarity zone is Chron C26r.
  The C27n–C26r transition is fully recorded along one of the sections (Nuusap Qaqqarsua), with intermediate directions covering a 200  m thick succession of lavas. A combined palaeomagnetic, field and geochemical study along this profile showed good agreement; that is, geochemically and geologically derived single magmatic events show groupings of the palaeomagnetic directions. Supposing a duration for the geomagnetic transition of 5000 years, the eruption frequency during this period was as high as one flow every 80 years.  相似文献   
999.
1000.
The conductivity structure of the Earth's mantle was estimated using the induction method down to 2100  km depth for the Europe–Asia region. For this purpose, the responses obtained at seven geomagnetic observatories (IRT, KIV, MOS, NVS, HLP, WIT and NGK) were analysed, together with reliable published results for 11  yr variations. 1-D spherical modelling has shown that, beneath the mid-mantle conductive layer (600–800  km), the conductivity increases slowly from about 1  S  m−1 at 1000  km depth to 10  S  m−1 at 1900  km, while further down (1900–2100  km) this increase is faster. Published models of the lower mantle conductivity obtained using the secular, 30–60  yr variations were also considered, in order to estimate the conductivity at depths down to the core. The new regional model of the lower mantle conductivity does not contradict most modern geoelectrical sounding results. This model supports the idea that the mantle base, situated below 2100  km depth, has a very high conductivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号